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NOTE

Derivation of the Lattice Boltzmann Method by Means of the
Discrete Ordinate Method for the Boltzmann Equation

Recently the lattice Boltzmann equation method has dimensional fluid motion. Hence only the reduced distribu-
tion function,been extensively studied in a view point of its applicability

and has been applied to various problems [1–5]. The lattice
Boltzmann method proposed by Chen et al. [6, 7] and Qian
et al. [8] which ensures isotropy, Galilean invariance, and Ey

2y
f dcz , (2)

possesses a velocity-independent pressure, is called the
lattice Boltzmann BGK method, since it employs the single
relaxation time approximation first introduced by Bhatna- is considered hereafter and is redefined as f. The redefined
gar, Gross, and Krook [9] in 1954 to greatly simplify the distribution function is governed by an equation similar
collision operator of the Boltzmann equation. The lattice to Eq. (1) and an equilibrium distribution function fM is
Boltzmann method was proposed as an extension of lattice defined as
gas automata [10–14] which was found to include various
drawbacks according to the extensive study [4]. Like the
derivation of the lattice gas automata [10–14], the deriva-

fM 5
r

2fRT
exp S2

1
2RT

(c 2 u)2D, (3)tion of the lattice Boltzmann method is also based on a
requirement that it gives a Navier–Stokes equation at a
limit of small ‘‘Knudsen number.’’ In fact, the lattice Boltz-
mann method in standard use was designed to give an where r is a density, u a fluid velocity, T a temperature,
incompressible Navier–Stokes equation [4]. The deriva- and R is the gas constant. The macroscopic values such as
tion of it is complicated and, therefore, it is not clear the density and the velocity of the fluid are defined as
enough how to extend the lattice Boltzmann method so
that, for example, it reduces to the Navier–Stokes equation
for compressible gas flow, multicomponent mixture gas

r 5 EE
y

2y

f dc,

(4)

flow, and so on.
In this note, we show that the lattice Boltzmann BGK

method in common use [4] can be derived from the Boltz-
mann equation itself. According to the present derivation, ru 5 EE

y

2y

c f dc.
it is apparent that the equation thus derived can be reduced
to the Navier–Stokes equation at a limit of small Knudsen
number since the equation thus derived is the Boltzmann

Hereafter we assume that the molecular velocity and fluidequation itself. Hence the present derivation method gives
velocity are normalized by a quantity of Ï3RT after theus a simple and flexible recipe to construct the lattice Boltz-
definition in the paper by Hou et al. [4]. Under this assump-mann method, and makes it easy to construct an extended
tion, the equilibrium distribution function islattice Boltzmann method in various ways.

Let us consider the Boltzmann equation for a single
molecule with BGK type collision operator,

fM 5
r

2f/3
exp S2

3
2

(c 2 u)2D, (5)
­f
­t

1 c
­f
­x

5 n( fM 2 f ), (1)

where f is a distribution function, c is a molecular velocity, and the acoustic velocity defined by cs 5 ÏRT becomes
1/Ï3.and n is a collision frequency [9]. Here we consider the 2
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First we briefly describe the discrete ordinate method Here we assume that a deviation of temperature from the
state at rest can be neglected. Since the deviation of theto solve the integro-differential equation defined by Eqs.

(1), (3), and (4), which has been utilized for a rarefied gas distribution function from the one at rest is also small, it
is assumed that the distribution function is approximated asflow analysis as a standard technique [15]. To solve the

above equation by means of the discrete ordinate method,
a set of discrete molecular velocity must be defined, on
which the distribution function is evaluated. Hence the f 5

w(c)
2f/3

exp S2
3
2

c2D. (9)
Boltzmann equation, which is an integro-differential equa-
tion in nature, reduces to the system of differential equa-
tions The perturbed distribution function w also satisfies the

system of equations similar to the one for the original
distribution function (6),­fi

­t
1 ci

­fi

­x
5

n
d

( fM,i 2 fi), (6)

­wi

­t
1 ci

­wi

­x
5

n
d

(wM, i 2 wi), (10)where fi is the distribution function evaluated at the ith
discrete velocity point of the set of discrete velocities. In
the equation, since, as a goal of the present paper, we

where the perturbed equilibrium distribution functionderive a lattice Boltzmann method in which the time and
wM becomesthe physical space is discretized, it was assumed that the

time and space coordinate is normalized by means of the
time step Dt and csDt, respectively. The nondimensional

wM 5 rS1 1 3(c ? u) 1
9
2

(c ? u)2 2
3
2

u2D, (11)parameter d 5 1/(n0Dt) plays a roll of Knudsen number.
Here n0 is a reference value for the collision frequency.
To solve the discretized Boltzmann equation (6) with re-

and the macroscopic values are defined as,spect to t and x, the equilibrium distribution function fM

in the right hand side of the equation must be evaluated.
This evaluation can be carried out, once the macroscopic
values (r and ru) are evaluated in advance. The macro- r 5 EE

y

2y

f dc 5 O
i

wiwi ,

(12)
scopic values r and ru are evaluated by Eq. (4). Since only
the distribution functions at discrete velocity points are
defined, after an approximate function for the distribution ru 5 EE

y

2y

c f dc 5 O
i

w9i wi ,
function is chosen Eq. (4) reduces to a weighted summation
of the distribution function defined on the discrete veloc-
ity points,

where wi and w9i are coefficients for a quadrature.
To obtain coefficients of the quadrature for calculating

r 5 O
i

Wi fi ,
(7)

the macroscopic values, the perturbed distribution function
is approximated by using an appropriate function of c. The
approximated distribution function must satisfy the restric-ru 5 O

i
W9i fi ,

tions

where Wi and W9i are the coefficients for the quadrature.
w̃(ci ) 5 wi . (13)The system of Eq. (6) and the definition of macroscopic

values (7) give a basic system of equations in the discrete
coordinate method to solve the Boltzmann equation. That is, the approximate distribution function must have

Now we consider the low speed fluid motion. Under a specified value at each discrete velocity point. As for an
this condition, the equilibrium distribution function can appropriate approximate function, we employ the function
be linearized around the state at rest; for example, the
equilibrium distribution function is linearized as

w̃(c; wi) 5 a0 1 (c ? a1 ) 1 (c ? a2)2. (14)

fM 5
r

2f/3 S1 1 3(c ? u) 1
9
2

(c ? u)2 2
3
2

u2) exp S2
3
2

c2D.
This function includes 5 unknown parameters (a0 , a1 , and
a2 ) which can be determined by using the values of the(8)
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From a requirement defined by Eq. (13), the relation be-
tween the unknown parameters included in the approxi-
mate function (14) and the distribution functions at discrete
velocity points can be obtained as

a0 5 w0 ,

a1,x 5
1
2

[(wI
1 2 w0) 2 (wI

3 2 w0)],

(18)
a1,y 5

1
2

[(wI
2 2 w0 ) 2 (wI

4 2 w0 )],

(a2,x)2 1 (a2,y)2 5
1
2

[wI
1 1 wI

2 1 wI
3 1 wI

4 2 4w0 ],

FIG. 1. Sketch for the discrete velocity points.

for the first set of discrete velocity points, and

distribution function at 5 discrete velocity points. As for
the discrete points on which the distribution function is a0 5 w0 ,
defined, we consider the following set of discrete points,

a1,x 5
1
4

[(wII
1 2 wII

3 ) 1 (wII
4 2 wII

2 )],

(19)c0 5 (0, 0),
a1,y 5

1
4

[(wII
1 2 wII

3 ) 2 (wII
4 2 wII

2 )],

cI
i 5 Scos

i 2 1
2

f, sin
i 2 1

2
fD (i 5 1, ..., 4) (15)

(a2,x)2 1 (a2,y)2 5
1
4

[wII
1 1 wII

2 1 wII
3 1 wII

4 ],

cII
i 5 Scos Si 2 1

2
f 1

f
4D , sin Si 2 1

2
f 1

f
4DD (i 5 1, ..., 4),

for the second set of discrete velocity points. On the other
hand, the relations between the macroscopic values (r and

which corresponds to the 9 velocity model of the lattice ru) and the unknown parameters are obtained as
Boltzmann method (see Fig. 1). Since we need 5 values
of the distribution function to determine the unknown
parameters included in the approximate function (14), the
5 discrete velocity points must be selected from the 9 dis- r 5 Sa0 1

1
3

ua2u2D,

(20)crete points. Even though several possibilities for the selec-
tion exists, we select the following two sets of 5 velocity

ru 5
1
3

a1 ,points. One is

c0 5 (0, 0)
(16) by substituting the approximated distribution function to

the definition (12). Finally, by combining the relation (20)
cI

i 5 Scos
i 2 1

2
f, sin

i 2 1
2

fD (i 5 1, ..., 4) and Eq. (18) (or (19)), the relations between the macro-
scopic values (r, ru) and the distribution function are ob-
tained as

and another is

rI 5
1
3

w0 1
1
6 Oi

wI
i ,

(21)
c0 5 (0, 0), (17)

(ru)I 5
1
6 Oi

wI
icI

i ,cII
i 5 Scos Si 2 1

2
f 1

f
4D, sin Si 2 1

2
f 1

f
4DD (i 5 1, ..., 4).
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for the discrete distribution function defined on the first equations. Unfortunately both of them are slightly devi-
ated from the Euler equation, although we can expectset of discrete velocity points and
that from the discretized Boltzmann equation at a limit
of infinite discrete velocity points, the Euler equation is

rII 5
2
3

w0 1
1

12 Oi
wII

i ,
(22)

obtained at an accuracy up to the first order of Knudsen
number. Hence the present deviation from the Euler equa-
tion is attributed to the limitation in the number of discrete(ru)II 5

1
12 Oi

wII
i cII

i ,
velocity points. Fortunately, by combining the contribu-
tions from the first and second set of the discrete velocity

for the one defined on the second set of discrete veloc- points, we can show that this drawback can be overcome.
ity points. To combine the contributions from both of the sets, we

There are a variety of choices for an approximation assume the linear combination. That is, the definition of
function besides the present selection of Eq. (14). How- macroscopic values is assumed to be
ever, the advantage of this approximate function is that
it can be reduced exactly to the equilibrium distribution r 5 (1 2 a)rI 1 arII,
function when the distribution function approaches an
equilibrium state; i.e., for an equilibirum state, the coeffi- 5

1
3

(1 1 a)w0 1 (1 2 a)
1
6 Oi

wI
i 1 a

1
12 Oi

wII
i , (27)

cients in it are reduced to

ru 5 (1 2 a)(ru)I 1 a(ru)II,

a0 5 r S1 2
3
2

u2D,
5 (1 2 a)

1
6 Oi

wI
icI

i 1 a
1
12 Oi

wII
i cII

i . (28)

a1 5 3ru, (23)

It should be noted that, in a view point of recovering
a2 5 u !9

2
r. the macroscopic values, any number of a is acceptable.

However, to recover the Euler equation, it is easily shown
that the free parameter a must be set as a 5 1/3. HenceLet us see what kind of equation is obtained for the
the definition of the macroscopic values reduces tomacroscopic values at small Knudsen number limit, from

the discretized Boltzmann equation. By employing the
Chapman–Enskog expansion method, we can obtain the

r 5
4
9

w0 1
1
9 Oi

wI
i 1

1
36 Oi

wII
i ,

(29)
equation accurate to the first order of Knudsen number,

ru 5
1
9 Oi

wI
icI

i 1
1

36 Oi
wII

i cII
i .­r

­t
1 =ru 5 0,

(24)
In fact, by applying the Chapman–Enskog expansion to the­ru

­t
1 =P0 5 0,

discretized Boltzmann equation defined on the 9 discrete
velocity points (i.e., a set of Eqs. (10) and (29)) up to an
accuracy of second order of Knudsen number, we can getwhere the momentum transfer tensor P0 is defined as
the equations

P0
ab 5 Fr

3
2

1
2

ru2G dab 1
3
2

ruaubdab , (25)
­r

­t
1 =ru 5 0,

(30)for the discretized Boltzmann equation defined on the first ­ru
­t

1 =(P0 1 P1) 5 0,set of the discrete velocity points (i.e., a set of Eqs. (10)
and (21)), and

where
P0

ab 5 Fr

3
1 ru2G dab 1 3ruaub 2 3ruaubdab , (26)

P0
ab 5

r

3
dab 1 ruaub ,

(31)for the equation defined on the first set of the discrete
velocity points (i.e., a set of Eqs. (10) and (22)). The equa- P1

ab 5
dr

3n S­ua

­xb
1

­ub

­xa
D ,

tions thus obtained are expected to be the so-called Euler
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and the subscripts a, b represent the components for the velocity points with some approximations. Hence, by using
the present derivation procedure, it may be possible tox, y coordinates. Here, in the derivation procedure, the

terms including the third power of the velocity were ne- produce a variety of the lattice Boltzmann method by
changing various assumptions included, such as an assump-glected. This equation is exactly the same as the incom-

pressible Navier–Stokes equation if we define a pressure tion of linearized equation and selection of the approxi-
mate distribution function and the set of discrete velocityas p 5 c2

s r 5 r/3 and a viscosity as e 5 dr/3n and consider
a flow in which the density variation is neglected. points. Also it may be possible to construct a lattice Boltz-

mann method applicable to a mixture gas flow, being basedTo show the relation between the present method and
the lattice Boltzmann method in common use, we redefine on an appropriate Boltzmann equation.

In the present note, we have shown that the lattice Boltz-the distribution function as
mann BGK method can be derived from the Boltzmann
equation by means of the discrete ordinate method which
is a standard technique for analyzing the Boltzmann equa-
tion. Apparently, the thus derived Boltzmann equation
with the BGK type collision operator reduces to the Na-w̄i 5

4
9

w0

1
9

wI
i

1
36

wII
i

. (32)
vier–Stokes equation at a limit of small Knudsen number,
which is a primary application regime for the lattice Boltz-
mann method. With respect to the derivation procedure,

5
the present method shows a clear contrast with the original
lattice Boltzmann BGK method which was constructedThen the r and ru can be rewritten by using the redefined
from the requirement that it is reducible to the Navier–distribution function,
Stokes equation. In the present derivation, however, the
reducibility to the Navier–Stokes equation is ensured if

r 5 O
i

w̄i ,
(33)

we select a proper set of discrete velocity points. Since the
present derivation method is simple and flexible enough,

ru 5 O
i

w̄ici . it enables us to extend the lattice Boltzmann method in
various ways.

The equation for the redefined perturbed distribution func-
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­t
1 ci

­w̄i

­x
5

n
d

(w̄M,i 2 w̄i ), (34)
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